Agent57 light
- class srl.algorithms.agent57_light.agent57_light.Config(framework: ~typing.Literal['auto', 'tensorflow', 'torch'] = 'auto', observation_mode: ~typing.Literal['', 'render_image'] = '', override_env_observation_type: ~srl.base.define.SpaceTypes = SpaceTypes.UNKNOWN, override_observation_type: str | ~srl.base.define.RLBaseTypes = <RLBaseTypes.NONE: 1>, override_action_type: str | ~srl.base.define.RLBaseTypes = <RLBaseTypes.NONE: 1>, action_division_num: int = 10, observation_division_num: int = 1000, frameskip: int = 0, extend_worker: ~typing.Type[ExtendWorker] | None = None, processors: ~typing.List[RLProcessor] = <factory>, render_image_processors: ~typing.List[RLProcessor] = <factory>, enable_rl_processors: bool = True, enable_state_encode: bool = True, enable_action_decode: bool = True, window_length: int = 1, render_image_window_length: int = 1, render_last_step: bool = True, render_rl_image: bool = True, render_rl_image_size: ~typing.Tuple[int, int] = (128, 128), enable_sanitize: bool = True, enable_assertion: bool = False, dtype: str = 'float32', test_epsilon: float = 0, test_beta: float = 0, batch_size: int = 32, memory: ~srl.rl.memories.priority_replay_buffer.PriorityReplayBufferConfig = <factory>, lr_ext: float = 0.0001, lr_ext_scheduler: ~srl.rl.schedulers.lr_scheduler.LRSchedulerConfig = <factory>, lr_int: float = 0.0001, lr_int_scheduler: ~srl.rl.schedulers.lr_scheduler.LRSchedulerConfig = <factory>, target_model_update_interval: int = 1500, enable_double_dqn: bool = True, enable_rescale: bool = False, input_value_block: ~srl.rl.models.config.input_value_block.InputValueBlockConfig = <factory>, input_image_block: ~srl.rl.models.config.input_image_block.InputImageBlockConfig = <factory>, actor_num: int = 32, ucb_window_size: int = 3600, ucb_epsilon: float = 0.01, ucb_beta: float = 1, enable_intrinsic_reward: bool = True, episodic_lr: float = 0.0005, episodic_lr_scheduler: ~srl.rl.schedulers.lr_scheduler.LRSchedulerConfig = <factory>, episodic_count_max: int = 10, episodic_epsilon: float = 0.001, episodic_cluster_distance: float = 0.008, episodic_memory_capacity: int = 30000, episodic_pseudo_counts: float = 0.1, lifelong_lr: float = 0.0005, lifelong_lr_scheduler: ~srl.rl.schedulers.lr_scheduler.LRSchedulerConfig = <factory>, lifelong_max: float = 5.0, input_ext_reward: bool = True, input_int_reward: bool = False, input_action: bool = False, disable_int_priority: bool = False, dummy_state_val: float = 0.0)
-
- test_epsilon: float = 0
ε-greedy parameter for Test
- test_beta: float = 0
intrinsic reward rate for Test
- batch_size: int = 32
Batch size
- lr_ext: float = 0.0001
Learning rate
- lr_ext_scheduler: LRSchedulerConfig
- lr_int: float = 0.0001
Intrinsic network Learning rate
- lr_int_scheduler: LRSchedulerConfig
- target_model_update_interval: int = 1500
Synchronization interval to Target network
- enable_double_dqn: bool = True
enable DoubleDQN
- enable_rescale: bool = False
enable rescaling
- input_value_block: InputValueBlockConfig
- input_image_block: InputImageBlockConfig
<DuelingNetwork> hidden layer
- actor_num: int = 32
ucb(160,0.5 or 3600,0.01)
- ucb_window_size: int = 3600
UCB上限
- ucb_epsilon: float = 0.01
UCBを使う確率
- ucb_beta: float = 1
UCBのβ
- enable_intrinsic_reward: bool = True
enable intrinsic reward
- episodic_lr: float = 0.0005
Episodic Learning rate
- episodic_lr_scheduler: LRSchedulerConfig
- episodic_count_max: int = 10
[episodic] k
- episodic_epsilon: float = 0.001
[episodic] epsilon
- episodic_cluster_distance: float = 0.008
[episodic] cluster_distance
- episodic_memory_capacity: int = 30000
[episodic] capacity
- episodic_pseudo_counts: float = 0.1
[episodic] 疑似カウント定数(c)
- episodic_emb_block: MLPBlockConfig
<MLPBlock> [episodic] emb block
- episodic_out_block: MLPBlockConfig
<MLPBlock> [episodic] out block
- lifelong_lr: float = 0.0005
Lifelong Learning rate
- lifelong_lr_scheduler: LRSchedulerConfig
- lifelong_max: float = 5.0
[lifelong] L
<MLPBlock> [lifelong] hidden block
- input_ext_reward: bool = True
[UVFA] input ext reward
- input_int_reward: bool = False
[UVFA] input int reward
- input_action: bool = False
[UVFA] input action
- disable_int_priority: bool = False
Not use internal rewards to calculate priority
- dummy_state_val: float = 0.0
dummy_state_val