Deep Q-Networks
- class srl.algorithms.dqn.dqn.Config(framework: str = 'auto', batch_size: int = 32, memory_capacity: int = 100000, memory_warmup_size: int = 1000, memory_compress: bool = True, memory_compress_level: int = -1, observation_mode: str | ~srl.base.define.ObservationModes = ObservationModes.ENV, override_observation_type: ~srl.base.define.SpaceTypes = SpaceTypes.UNKNOWN, override_action_type: str | ~srl.base.define.RLBaseActTypes = <RLBaseActTypes.NONE: 1>, action_division_num: int = 10, observation_division_num: int = 1000, frameskip: int = 0, extend_worker: ~typing.Type[ExtendWorker] | None = None, parameter_path: str = '', memory_path: str = '', use_rl_processor: bool = True, processors: ~typing.List[RLProcessor] = <factory>, render_image_processors: ~typing.List[RLProcessor] = <factory>, enable_state_encode: bool = True, enable_action_decode: bool = True, enable_reward_encode: bool = True, enable_done_encode: bool = True, window_length: int = 1, render_image_window_length: int = 1, enable_sanitize: bool = True, enable_assertion: bool = False, test_epsilon: float = 0, epsilon: float | ~srl.rl.schedulers.scheduler.SchedulerConfig = 0.1, lr: float | ~srl.rl.schedulers.scheduler.SchedulerConfig = 0.001, discount: float = 0.99, target_model_update_interval: int = 1000, enable_reward_clip: bool = False, enable_double_dqn: bool = True, enable_rescale: bool = False)
<ExperienceReplayBuffer> <RLConfigComponentFramework> <RLConfigComponentInput>
- test_epsilon: float = 0
ε-greedy parameter for Test
- epsilon: float | SchedulerConfig = 0.1
<Scheduler> ε-greedy parameter for Train
- lr: float | SchedulerConfig = 0.001
<Scheduler> Learning rate
- discount: float = 0.99
Discount rate
- target_model_update_interval: int = 1000
Synchronization interval to Target network
- enable_reward_clip: bool = False
If True, clip the reward to three types [-1,0,1]
- enable_double_dqn: bool = True
enable DoubleDQN
- enable_rescale: bool = False
enable rescaling
<MLPBlock> hidden layer
- set_atari_config()
Set the Atari parameters written in the paper.